Inbreeding depression in small ruminants: from pedigree to genomic estimation

Matteo Cortellari^a, Alessio Negro^a, Arianna Bionda^a, Stefano Frattini^a, Silverio Grande^b, Paola Crepaldi^a

^aDipartimento di Scienze Agrarie e Ambientali (DISAA), University of Milan, Milano, Italy

^bDirezione, Associazione Nazionale della Pastorizia (Asso.Na. Pa), Roma, Italy

Nowadays genomic data represent an increasingly important tool to exploit the traditional pedigree information in order to create better mating schemes and preserve biodiversity. In the Italian small ruminants populations the use of such information could improve the estimation of genetic population parameters leading to a better management of the genetic background of the different flocks. In this work we investigate the relationship between different methods of inbreeding calculation from traditional pedigree information (FPED) and from 50k SNP chip genomic data (FROH) on the estimation of inbreeding depression effect on daily milk production. We analyzed pedigree and genomic data from 980 individuals of Camosciata delle Alpi goat breed and 380 individuals of Massese sheep breed. Data were provided by the Italian association of small ruminants breeders (ASSONAPA) within the PSRN project Conservation, Health and Efficiency Empowerment of Small Ruminant (CHEESR). Editing of genomic data and calculation of FROH were performed with the PLINK software, while calculation of FPED was performed with the R package Optisel. The relationship between the two inbreeding indicators and daily milk production were calculated using two different GLM models. The results showed a similar mean value of FROH in the two populations sampled, 6.6% in Massese and 5.4% in Camosciata, but the mean FPED value in Massese (3.9%) was more than double than in Camosciata (1.5%). As expected, the correlation between FPED and FROH was much lower in Camosciata (0.19) than in Massese (0.39). In Camosciata, 30.6% of FPED values equal to zero were unreliable (they exceeded the UIC 95% of the intercept). In terms of inbreeding depression effect (%) on daily milk production, daily milk production decreased by -0.017 (+ -0.005) in Camosciata and -0.015 (+ -0.018) in Massese using FROH and by -0.005(+ -0.005) and -0.049 (+ -0.03), respectively, using FPED. What emerges from these analyses is that, in populations with low average inbreeding, there is a similar inbreeding depression based on FROH estimate, but the completeness and validity of the pedigree recordings greatly affect the values of FPED. Based on that, the reliability of the pedigree information has to be fully evaluated in the estimation of the inbreeding depression effect.